
1

PolymorphismPolymorphism

2

Agenda

● What is and Why Polymorphism?
● Examples of Polymorphism in Java programs
● 3 forms of Polymorphism

3

 What is & Why What is & Why
Polymorphism?Polymorphism?

4

What is Polymorphism?

● Generally, polymorphism refers to the ability to
appear in many forms

● Polymorphism in a Java program
– The ability of a reference variable to change

behavior according to what object instance it is
holding.

– This allows multiple objects of different subclasses
to be treated as objects of a single super class,
while automatically selecting the proper methods to
apply to a particular object based on the subclass it
belongs to

5

Polymorphism Example

● For example, given a base class shape,
polymorphism enables the programmer to define
different area methods for any number of derived
classes, such as circles, rectangles and triangles.
No matter what shape an object is, applying the
area method to it will return the correct results.

6

 Examples of Examples of
Polymorphic Behavior Polymorphic Behavior

in Java Programsin Java Programs

7

Example #1: Polymorphism

● Given the parent class Person and the child class
Student, we add another subclass of Person
which is Employee.

● Below is the class hierarchy

8

Example #1: Polymorphism

● In Java, we can create a reference that is of type
super class, Person, to an object of its subclass,
Student.
public static main(String[] args) {

Student studentObject = new Student();
Employee employeeObject = new Employee();

Person ref = studentObject; // Person reference points
 // to a Student object

 // Calling getName() of the Student object instance
 String name = ref.getName();
}

9

Example #1: Polymorphism

● Now suppose we have a getName method in our
super class Person, and we override this method in
both Student and Employee subclass's
public class Student {

public String getName(){
System.out.println(“Student Name:” + name);
return name;

}
}

public class Employee {
public String getName(){

System.out.println(“Employee Name:” + name);
return name;

}
}

10

Example #1: Polymorphism

● Going back to our main method, when we try to call
the getName method of the reference Person ref,
the getName method of the Student object will be
called.

● Now, if we assign ref to an Employee object, the
getName method of Employee will be called.

11

Example #1: Polymorphism
1 public static main(String[] args) {
2
3 Student studentObject = new Student();
4 Employee employeeObject = new Employee();
5
6 Person ref = studentObject; //Person ref. points to a
7 // Student object
8
9 // getName() method of Student class is called
10 String temp= ref.getName();
11 System.out.println(temp);
12
13 ref = employeeObject; //Person ref. points to an
14 // Employee object
15
16 //getName() method of Employee class is called
17 String temp = ref.getName();
18 System.out.println(temp);
19 }

12

Example #2: Polymorphism

● Another example that illustrates polymorphism is
when we try to pass a reference to methods as a
parameter

● Suppose we have a static method printInformation
that takes in a Person reference as parameter.

public static printInformation(Person p){
 // It will call getName() method of the
 // actual object instance that is passed
 p.getName();

}

13

Example #2: Polymorphism

● We can actually pass a reference of type Employee
and type Student to the printInformation method as
long as it is a subclass of the Person class.

public static main(String[] args){

Student studentObject = new Student();
Employee employeeObject = new Employee();

printInformation(studentObject);

printInformation(employeeObject);
}

14

 Benefits of Benefits of
PolymorphismPolymorphism

15

Benefits of Polymorphism

● Simplicity
– If you need to write code that deals with a family of types,

the code can ignore type-specific details and just interact
with the base type of the family

– Even though the code thinks it is using an object of the
base class, the object's class could actually be the base
class or any one of its subclasses

– This makes your code easier for you to write and easier
for others to understand

16

Benefits of Polymorphism

● Extensibility
– Other subclasses could be added later to the family of

types, and objects of those new subclasses would also
work with the existing code

17

 3 Forms of 3 Forms of
PolymorphismPolymorphism

18

3 Forms of Polymorphism
in Java program

● Method overriding
– Methods of a subclass override the methods of a

superclass
● Method overriding (implementation) of the abstract

methods
– Methods of a subclass implement the abstract methods

of an abstract class
● Method overriding (implementation) through the

Java interface
– Methods of a concrete class implement the methods of

the interface

19

PolymorphismPolymorphism

